Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.19.23286159

ABSTRACT

SARS-CoV-2 breakthrough infection of vaccinated individuals is increasingly common with the circulation of highly immune evasive and transmissible Omicron variants. Here, we report the dynamics and durability of recalled spike-specific humoral immunity following BA.1 or BA.2 breakthrough infection, with longitudinal sampling up to 8 months post-infection. Both BA.1 and BA.2 infection robustly boosted neutralisation activity against the infecting strain while expanding breadth against other Omicron strains. Cross-reactive memory B cells against both ancestral and Omicron spike were predominantly expanded by infection, with limited recruitment of de novo Omicron-specific B cells or antibodies. Modelling of neutralisation titres predicts that protection from symptomatic reinfection against antigenically similar strains will be remarkably durable, but is undermined by novel emerging strains with further neutralisation escape.


Subject(s)
Breakthrough Pain
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.12.19.521129

ABSTRACT

While the protective role of neutralising antibodies against COVID-19 is well-established, questions remain about the relative importance of cellular immunity. Using 6 pMHC-multimers in a cohort with early and frequent sampling we define the phenotype and kinetics of recalled and primary T cell responses following Delta or Omicron breakthrough infection. Recall of spike-specific CD4+ T cells was rapid, with cellular proliferation and extensive activation evident as early as 1 day post-symptom onset. Similarly, spike-specific CD8+ T cells were rapidly activated but showed variable levels of expansion. Strikingly, high levels of SARS-CoV-2-specific CD8+ T cell activation at baseline and peak were strongly correlated with reduced peak SARS-CoV-2 RNA levels in nasal swabs and accelerated clearance of virus. Our study demonstrates rapid and extensive recall of memory T cell populations occurs early after breakthrough infection and suggests that CD8+ T cells contribute to the control of viral replication in breakthrough SARS-CoV-2 infections.


Subject(s)
COVID-19 , Breakthrough Pain , Memory Disorders , Severe Acute Respiratory Syndrome
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.23.21268285

ABSTRACT

Vaccination against SARS-CoV-2 results in protection from acquisition of infection as well as improved clinical outcomes even if infection occurs, likely reflecting a combination of residual vaccine-elicited immunity and the recall of immunological memory. Here, we define the early kinetics of spike-specific humoral and T cell immunity after vaccination of seropositive individuals, and after breakthrough infection in vaccinated individuals. Intensive and early longitudinal sampling reveals the timing and magnitude of recall, with the phenotypic activation of B cells preceding an increase in neutralizing antibody titres. In breakthrough infections, the delayed kinetics of humoral immune recall provides a mechanism for the lack of early control of viral replication but likely underpins accelerated viral clearance and the protective effects of vaccination against severe COVID-19.


Subject(s)
Memory Disorders , Breakthrough Pain , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL